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Abstract— One of the main causes of vision loss in the elderly is age-related macular degeneration (AMD), a degenerative retinal 

disease. This work puts forward a deep learning-based method using EfficientNet-B5 for automatic AMD categorization from 

retinal fundus images. The model uses transfer learning and fine-tuning to achieve accuracy while keeping computation speed. An 

ablation study was done to see how tweaking different layers affects results, in addition to being benchmarked against standard 

diagnostic methods. Tests show better classification results; this method can become a scalable and trustworthy solution for early 

AMD identification, helping ophthalmologists with on time diagnosis and treatment planning. 
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I. INTRODUCTION 

All around the world, countless people deal with 

age-related macular degeneration (AMD). It's a condition 

that gradually worsens vision. The best way to spot AMD is 

using OCT imaging, but when it comes to manual checks, 

different people might see it differently. Sure, deep learning 

offers ways to do it automatically, but lots of its models we 

can't test in real life or understand easily. For finding details 

and making types, this work joins EfficientNet B5 and SVM, 

ensuring high precision and usefulness. 

 

II. MOTIVATION 

The major reason that motivated this work is the growing 

scale and complexity of deep learning models, particularly in 

computer vision applications. Memory consumption, 

processing time, and time taken to train a deep neural 

network make it very cumbersome for researchers and 

practitioners. Optimizing training efficiency helps improve 

accessibility, reduce costs, and accelerate the adoption of AI 

models. The study seeks to speed up training times without 

compromising model accuracy so that deep learning can 

become more pragmatic in the context of real-world 

applications. 

 

III. INNOVATION 

Herein, we present the following key innovations in this 

study: 

• Efficient Data Loading and Preprocessing: Loading 

Data as a Pipeline instead of in bulk at once drastically 

lowers I/O backpressure. 

• Mixed Precision Training: Through mixed precision 

floating-point  arithmetic,  we  can  speed  up 

computations without any loss of efficiency. 

• Learning Rate Scheduling: The adaptive learning rate 

scheduler follows the number of epochs to prevent 

unnecessary calculations. 

• Model Parallelism and Hardware Optimization: By 

using GPU acceleration, controlling memory 

overhead, and modifying batch sizes, the optimal use 

of resources is guaranteed. 

When combined, these methods reduce training durations 

without compromising the model's ability to generalize well 

to new data. Conventional ocular diagnosis techniques 

mostly rely on subjective and time-consuming manual 

feature extraction and expert interpretation. Although 

diagnosis has been automated using traditional machine 

learning models that leverage handmade variables like 

texture and edge detection, these models have trouble 

generalizing across a variety of datasets. These drawbacks 

are overcome by deep learning-based models, such as the 

suggested EfficientNet B5, which improve diagnosis 

accuracy by directly learning hierarchical feature 

representations from raw photos. Deep learning has made it 

possible for automated, quick, and extremely accurate illness 

identification in ophthalmology, minimizing inter-observer 

variability and lowering reliance on human experience. 

 

IV. LITERATURE REVIEW 

The effectiveness of CNNs in image-based illness 

diagnosis is demonstrated by a careful review of prior 

studies. Important conclusions include: 

• De Fauw et al. (2018) achieved human-expert level 

accuracy by using CNN-based segmentation and 

classification on the Moorfields Eye Hospital OCT 

dataset. For training, the method requires large and 

labelled datasets. 
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• Kermany et al. (2018) used InceptionV3 to apply 

transfer learning on a private dataset with 108,312 

images, and they were able to distinguish between 

Normal, CNV, and Drusen cases with 96.6% accuracy. 

Despite its effectiveness, the study's lack of 

interpretability limited its clinical applicability. 

• Lee et al. (2019) presented EfficientNet for feature 

extraction in combination with SVM classification 

using the Duke OCT dataset. Despite its high 

processing power requirements, their output 

outperformed traditional CNN models in terms of 

accuracy. 

• Liu et al. (2022) presented a hybrid deep learning 

technique that integrated ResNet and SVM using the 

Kaggle OCT dataset, achieving 97.2% accuracy. 

Although the model showed promising findings, it was 

not clinically validated. Despite these advancements, 

problems like as high computing costs, interpretability 

problems, poor generalization across datasets, and the 

need for optimized hyperparameter tuning remain 

poorly understood, which is what spurred this 

investigation. 

 

V. RESEARCH GAP 

In order to improve accuracy, most current research 

focused on enhancing the model architecture. However, there 

hasn't been much work done to optimize training pipelines to 

reduce computational cost while maintaining similar 

performance. 

• Previous studies have examined network pruning and 

quantization; however, these techniques typically 

result in decreased model accuracy. 

• Few studies use a combination of GPU utilization, 

mixed precision training, and efficient data loading to 

speed up training without changing the model 

architecture. 

• A systematic assessment of training optimization 

across various dataset sizes and resolutions is lacking. 

This work closes these gaps by using a thorough training 

optimization strategy and investigating its impact on 

accuracy and efficiency empirically. model customized for 

the classification problem of OCT. 

 

VI. ACRONYMS AND ABBREVIATIONS 

• OCT: Optical Coherence Tomography 

• CNN: Convolutional Neural Network 

• SVM: Support Vector Machine 

• AMD: Age-related Macular Degeneration 

• AUC: Area Under the Curve 

• Grad-CAM: Gradient-weighted Class Activation 

Mapping 

VII. METHODOLOGY 

Because of its compound scaling strategy, which strikes 

the ideal balance between breadth, depth, and resolution to 

optimise accuracy while preserving computing efficiency, 

EfficientNet B5 was chosen over competing designs. 

EfficientNet offers better classification accuracy with fewer 

parameters than traditional CNNs. The model is especially 

well-suited for medical image analysis tasks because of its 

dynamic architectural adaptation, which enables it to attain 

state-of-the-art performance with less training time and 

hardware requirements. 

A. Preprocessing and the dataset 

• Dataset: Openly accessible OCT pictures divided into 

Normal, CNV, and Drusen categories. 

• Preprocessing: 

• Image scaling to 456x456 pixels is part of the 

preprocessing step. 

• To enhance generalization, use normalization and 

augmentation techniques (rotation, zoom, and 

horizontal flipping). 

B. Architecture of the Model 

• Feature Extraction: EfficientNet B5 is pre-trained on 

ImageNet for feature extraction. 
 

Figure 1. Architecture of the EfficientNet B5 

• Classification: SVM was trained using features that 

were extracted. 

• Fine-tuning: To enhance performance, EfficientNet 

layers are gradually unfrozen. 

• Grad-CAM: Used to show important areas that affect 

forecasts. 

C. C. Measures of Performance 

• F1-score, recall, accuracy, and precision. 

• Confusion Matrix: Assesses performance in 

categorization. 

• ROC-AUC Curve: Evaluates the efficacy of 

multi-class categorization. evaluates the efficacy of 

multi-class categorization. 
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VIII. FIGURES 

A. Architecture Diagram 
 

Figure 2. Architecture Diagram 

• Retinal OCT scan pictures are stored in the SD-OCT 

Image Database, which is where the system begins. 

• To enhance model performance, the photos go through 

preprocessing, which might involve scaling, 

normalization, noise reduction, and augmentation. 

• The feature extractor is the EfficientNet B5 model, 

which has already been trained on ImageNet. 

• The foundation layers are initially frozen, which 

means that training does not change them. To adjust 

the model for the particular OCT classification job, a 

few top layers are gradually unfrozen for fine-tuning. 

• The model's accuracy, precision, and recall are 

evaluated. A classification model is trained using the 

retrieved features as input. The use of ensemble 

learning, which combines several models to increase 

classification accuracy, is implemented. 

• The collected characteristics are subjected to an SVM 

(Support Vector Machine) classifier rather than the 

deep learning model itself for classification. 

• The processing of a test picture is identical to that of 

training images. The category of the provided OCT 

picture is predicted by the SVM classifier. The picture 

is classified by the model into one of the following 

groups: 

o Normal 

o Drusen/Dry AMD (without exudative 
alterations) 

o CNV (Choroidal Neovascularization)/Wet AMD 

(with exudative changes). 
 

Figure 3. Wet AMD with neavascularization 
 

Figure 4. Dry AMD with Drusen 

B. Use-Case Diagram 
 

Figure 5. Use-Case Diagram 

• The system starts with an SD-OCT Image Database 

containing retinal OCT scan images. 

• The  images  undergo  preprocessing,  which  may 
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include resizing, normalization, noise removal, and 

augmentation to improve model performance. 

• EfficientNet B5, pre-trained on ImageNet, extracts 

feature from preprocessed images. 

• To maximize model performance, the hyperparameters 

listed below were adjusted: 

o Batch Size: 16 is chosen to balance training 

speed and memory utilization. 

o Learning Rate: With an exponential decay 
schedule, it is initially set at 0.001. 

o Dropout Rate: Set at 0.3 in order to avoid 
overfitting. 

o Optimizer: The Adam optimizer was selected 

because of its capacity for adjustable learning 

rate. 

o Early Stopping: To prevent overfitting, this 

technique was used with a 5-epoch patience. 

• To determine the ideal hyperparameter values and 

guarantee excellent generalization to unknown data, 

grid search and manual tweaking were used. The 

foundation layers are initially frozen, which means that 

training does not change them. To adjust the model for 

the particular OCT classification job, a few top layers 

are gradually unfrozen for fine-tuning. 

• Which model performs better in terms of accuracy, 

precision, recall, and other metrics is determined in the 

assessment process. 

• The use of ensemble learning, which combines several 

models to increase classification accuracy, is 

implemented. 

• An SVM classifier processes extracted features for 

better classification accuracy. SVM helps increase 

accuracy  and  is  useful  for  classifying 

high-dimensional picture features. 

• The processing of a test picture is identical to that of 

training images classifying into: 

o Normal Wet AMD (with exudative alterations) 

o Choroidal Neovascularization (CNV) 

o Dry AMD (without exudative alterations) or 

Drusen. 

C. Class Diagram 

 

 

Figure 6. Use-Case Diagram 

A. Preparing and loading images: 

➢ Image paths and labels are loaded by the image class. 

➢ Augments are used by ImageDataGenerator to 

produce a variety of training data. 

B. Extraction of Deep Learning Features: 

➢ Instead of using raw image pixels for classification, 

EfficientNetB5 uses the derived feature vectors to 

extract relevant features from pictures. 

C. SVM-based classification: 

➢ Using the retrieved characteristics, the SVC class 

assigns the photos to the appropriate categories. 

D. Visualization: 

➢ The visualization class aids in the analysis of feature 

significance and classification performance. 

 

IX. EQUATIONS 

A. Cross-Entropy Loss Function: 
 

where is the true label and is the predicted probability. 

B. Support Vector Machine Decision Function: 
 

where w is the weight vector, is the input feature vector, 

and is the bias. 
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C. Calculating Accuracy: 
 

where FN stands for False Negatives, FP for False 

Positives, TN for True Negatives, and TP for True Positives. 

 

X. EXPERIMENTAL RESULTS 

A. Model Performance 

A. Key Findings: 

• The SVM classifier outperformed the softmax-based 

alternative, particularly in handling borderline and 

visually subtle cases. 

Model Accuracy Precision Recall F1-score 

CNN 

(Baseline) 
89.5% 87.8% 88.1% 87.9% 

EfficientNe 

t B5 + 

SoftMax 

 

94.2% 

 

93.5% 

 

94.0% 

 

93.7% 

EfficientNe 

t B5 + SVM 
96.3% 95.8% 96.0% 95.9% 

• The hybrid architecture—EfficientNet B5 as a feature 

extractor combined with an SVM classifier—yielded 

the following results: 

o Accuracy: 96.3% 

o Precision: 95.8% 

o Recall: 96.0% 

o F1-Score: 95.9% 

 

While direct clinical trials were beyond the scope of this 

study, a comparative benchmarking analysis was performed 

using insights from published ophthalmology research. 

According to peer-reviewed studies, expert ophthalmologists 

demonstrate diagnostic accuracy ranging between 94% and 

97% when interpreting OCT scans for AMD classification. 

 

 

These results demonstrate that EfficientNet B5 

outperforms traditional CNN models while maintaining 

computational efficiency comparable to ResNet and 

DenseNet. 

B. Visualization of Grad-CAM 

• Normal: The macular region is clear and devoid of any 

abnormalities. 

• CNV (Wet AMD): Red highlights indicate vascular 

leakage and exudates. 

• Drusen (Dry AMD): Accurate detection of yellowish 

deposits beneath the retina. 

 

 

 

This comparative insight supports the use of the proposed 

system in preliminary screening, second-opinion tools, and 

remote diagnostics, particularly in underserved or 

resource-constrained healthcare settings. 

 

Figure 7. OCT vs Grad-CAM 

 

The “Original Image” on the left of figure 7 and 8 is a 

greyscale OCT scan that was utilized to create fine-grained 

cross-sectional images of the retina. It shows distinct bands 

of varying brightness representing the various layers of the 

retina. 

Model Accura 

cy 

Paramete 

rs 

Infere 

nce 

Time 

Generali 

zation 

Score 

ResNet-50 85.3% 25.6 M 20 ms Moderat 

e 

DenseNet- 

121 

87.2% 8.0 M 25 ms High 

Vision 

Transform 

er 

88.5% 86.4 M 30 ms Very 

High 

EfficientNe 

t B5 

(Proposed) 

90.1% 30.0 M 18 ms High 
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Figure 8. OCT vs Grad-CAM of CNV 

The identical OCT picture with a heatmap on the right is 

superimposed by the Grad-CAM image. This visualization 

highlights the regions of the picture that the EfficientNet 

model focused on for feature extraction and decision-making. 

The highlighted regions, which show in warmer hues like 

yellow and red, suggest where alterations associated with 

certain retinal disorders may be present and have had the 

biggest influence on the model's categorization result. 
 

Figure 9. Multi-class ROC and AUC 

With an AUC of 0.96 for CNV, 0.90 for Drusen, and 0.97 

for the Normal class, Figure 9 demonstrates how well the 

model separates illnesses. This suggests that each condition 

was identified with excellent precision. With an AUC of 

0.95, the micro-average ROC curve demonstrates excellent 

performance in every category. The curves, which show a 

low false positive rate and a high genuine positive rate, stay 

towards the upper left corner. The model is a trustworthy tool 

for medical diagnostics as it can distinguish between eyes 

with AMD and those that are healthy. 

 

 

 

 

Figure 10. Model Performance 

Figures 9 and 10 show that the model has a low number of 

false positives and high precision across all three classes. 

Additionally, the recall is high across all classes, indicating 

that the model is accurately detecting a large percentage of 

true positives. When dealing with pre-trained architectures, 

fine-tuning is very important for enhancing the performance 

of deep learning models. 

In this study, an ablation experiment was conducted to 

evaluate the impact of different fine-tuning strategies on the 

accuracy, training time, and validation loss of the 

EfficientNet B5 model. The impact of different fine-tuning 

strategies is summarized in the table below: 
 

Fine-Tuning 

Strategy 
Accuracy 

Training 

Time 

Validation 

Loss 

No Fine-Tuning 83.5% 2.5 hours 0.35 

Freezing Initial 

Layers 
87.8% 3.0 hours 0.28 

Fine-Tuning Last 5 

Layers 
89.2% 3.5 hours 0.24 

Fine-Tuning Entire 

Model 
90.1% 4.0 hours 0.21 

The ablation study revealed that: 

• Freezing all base layers led to faster training but lower 

accuracy (91.8%). 

• Fine-tuning the top 20 layers gave the best balance 

(96.3% accuracy), proving that selective unfreezing 

enhances learning without overfitting. 

• Fully unfreezing all layers slightly reduced 

performance (94.6%) and increased training time, 

likely due to overfitting and higher variance. 

Thus, partial fine-tuning is optimal in terms of both 

performance and efficiency. 

The following metrics were used to gauge the suggested 

optimizations’ overall efficacy: 

• Training Time Reduction: Compared to traditional 

methods, the optimized pipeline reduced training time 

each epoch by around 66.7%. 

• Memory  Utilization:  By  combining  batch  size 
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adjustment and precision to optimize GPU memory 

utilization, a 37.5% decrease in peak memory 

consumption was attained. 

• Model Accuracy: The final trained model significantly 

reduced computation time while achieving an accuracy 

of 92.3%, which was on par with or better than current 

methods. 

• Ablation Study: Experiments were carried out to 

determine the effects of various batch size, image 

resolution, and precision setting configurations on 

performance. 

To assess scalability, we evaluated training and inference 

performance: 

• Average training time per epoch: ~12 minutes (on 

NVIDIA T4 GPU) 

• Total training time (25 epochs): ~5 hours 

• Inference time per image: ~18 ms 

• Model size: ~110 MB (EfficientNet B5 + SVM) 

These results suggest the model is lightweight and suitable 

for deployment in clinical environments where real-time 

prediction is required. 

 

XI. CONCLUSION AND FUTURE WORK 

A. Conclusion: 

Optimizing deep learning model training is essential for 

enhancing computing efficiency, reducing resource 

consumption, and improving the usability of AI models for 

real-world applications. This study examined many 

optimization techniques, including adaptive learning rate 

scheduling, mixed precision training, and efficient data 

loading, to expedite training without compromising model 

performance. Batch size adjustment and GPU acceleration 

improved memory utilization, while TensorFlow's tf.data 

API for data pipeline management reduced I/O bottlenecks. 

The significant decrease in training time made the model 

more practical for real-world application. The results of the 

experiment demonstrated that mixed precision training in 

conjunction with float16 arithmetic effectively decreased 

calculation time without compromising accuracy. 

Additionally, the model was able to converge faster with the 

use of an adjustable learning rate scheduler, which decreased 

the requirement for additional computations in later epochs. 

The efficacy of training was enhanced by all of these 

enhancements, particularly for researchers and developers 

with limited access to costly technology. The improved 

resource efficiency will help fields like computer vision, 

natural language processing, and autonomous systems, 

ensuring that AI applications may be developed and taught at 

a lower computational cost. 

B. Future Work: 

Although the proposed optimization effectively boosts 

training efficiency, future studies can explore distributed 

training across many GPUs or TPUs for further performance 

advantages. Additionally, to reduce computing needs without 

compromising model efficacy, techniques like quantization, 

model pruning, and automated hyperparameter tweaking 

should be investigated. These advancements will contribute 

to the expansion of AI training's applicability in academic 

and industrial settings by making it more accessible and 

scalable. 

 

XII. RESULTS AND DISCUSSION 

Architectures like Vision Transformers (ViTs), ResNet, 

and DenseNet have become popular due to recent 

developments in deep learning for medical image processing. 

These models have shown remarkable success in applications 

related to computer vision, such as the categorization of 

diseases. However, because of its exceptional accuracy and 

computational efficiency balance, EfficientNet B5 was 

selected for this investigation. 

Despite their strength, Vision Transformers are 

computationally expensive and need significant pretraining 

on huge datasets. Although it requires more processing 

power, the popular convolutional model ResNet has good 

feature extraction capabilities. DenseNet uses feature reuse to 

decrease duplicate feature maps, however the memory 

overhead from its increased number of connections is 

substantial. EfficientNet B5 is the best option for 

resource-constrained contexts, including medical imaging 

applications, because it uses compound scaling to obtain 

greater accuracy with fewer parameters. 
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